
Dynamic Storage Exercise

Dynamic Storage Exercise

We saw that by
int i;

while (std::cin >> i) ...

we can read inputs as long as there are more available in std::cin.

Your task is to write a code snippet which reads inputs as described
above, and which then stores these inputs in an array. For this exercise
you are not allowed to use the Standard Library (i.e. no std::vector).

To achieve this you will have to use new[] and delete[].

2(From: Script Exercise 158.a)

Dynamic Storage Solution

• Idea:
1. Allocate some range (using new[])

2. As soon as range full, allocate larger range (using new[])

3. Copy over initial range

4. Delete initial range (using delete[])

5. Go back to 2. with newly generated memory

3(From: Script Exercise 158.a)

Dynamic Storage Solution

• Idea:
1. Allocate some range (using new[])

2. As soon as range full, allocate larger range (using new[])

3. Copy over initial range

4. Delete initial range (using delete[])

5. Go back to 2. with newly generated memory

4

4 2 7

(From: Script Exercise 158.a)

Dynamic Storage Solution

• Idea:
1. Allocate some range (using new[])

2. As soon as range full, allocate larger range (using new[])

3. Copy over initial range

4. Delete initial range (using delete[])

5. Go back to 2. with newly generated memory

5

4 2 7

(From: Script Exercise 158.a)

Dynamic Storage Solution

• Idea:
1. Allocate some range (using new[])

2. As soon as range full, allocate larger range (using new[])

3. Copy over initial range

4. Delete initial range (using delete[])

5. Go back to 2. with newly generated memory

6

4 2 7

(From: Script Exercise 158.a)

Dynamic Storage Solution

• Idea:
1. Allocate some range (using new[])

2. As soon as range full, allocate larger range (using new[])

3. Copy over initial range

4. Delete initial range (using delete[])

5. Go back to 2. with newly generated memory

7

4 2 7 4

(From: Script Exercise 158.a)

Dynamic Storage Solution

• Idea:
1. Allocate some range (using new[])

2. As soon as range full, allocate larger range (using new[])

3. Copy over initial range

4. Delete initial range (using delete[])

5. Go back to 2. with newly generated memory

8

4 2 7 24

(From: Script Exercise 158.a)

Dynamic Storage Solution

• Idea:
1. Allocate some range (using new[])

2. As soon as range full, allocate larger range (using new[])

3. Copy over initial range

4. Delete initial range (using delete[])

5. Go back to 2. with newly generated memory

9

4 2 7 24 7

(From: Script Exercise 158.a)

Dynamic Storage Solution

• Idea:
1. Allocate some range (using new[])

2. As soon as range full, allocate larger range (using new[])

3. Copy over initial range

4. Delete initial range (using delete[])

5. Go back to 2. with newly generated memory

10

4 2 7 24 7

(From: Script Exercise 158.a)

Dynamic Storage Solution

• Idea:
1. Allocate some range (using new[])

2. As soon as range full, allocate larger range (using new[])

3. Copy over initial range

4. Delete initial range (using delete[])

5. Go back to 2. with newly generated memory

11

24 74 2 7

(From: Script Exercise 158.a)

Dynamic Storage Solution

• New range… How much larger?

• much larger Pro: ranges less often full
 copy ranges less often

Con: larger memory consumption

• Important: Larger by a factor, not by a constant…
• length_n = length_o * 2

length_n = length_o + 2

12(From: Script Exercise 158.a)

Dynamic Storage Solution

• Larger by: a) factor 2 b) constant 2

13

elements Case a) Case b)

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

(From: Script Exercise 158.a)

Dynamic Storage Solution

• Larger by: a) factor 2 b) constant 2

14

elements Case a) Case b)

2 2 2

3 4 4

4 4 4

5 8 6

6 8 6

7 8 8

8 8 8

9 16 10

10 16 10

11 16 12

12 16 12

13 16 14

14 16 14

15 16 16

16 16 16

17 32 18

arbitr. chosen

(From: Script Exercise 158.a)

Dynamic Storage Solution

• Larger by: a) factor 2 b) constant 2

15

elements Case a) Case b)

2 2 2

3 4 4

4 4 4

5 8 6

6 8 6

7 8 8

8 8 8

9 16 10

10 16 10

11 16 12

12 16 12

13 16 14

14 16 14

15 16 16

16 16 16

17 32 18

Case a):

Significantly
fewer resizings.

arbitr. chosen

(From: Script Exercise 158.a)

Dynamic Storage Solution

• Larger by: a) factor 2 b) constant 2

16

elements Case a) Case b)

2 2 2

3 4 4

4 4 4

5 8 6

6 8 6

7 8 8

8 8 8

9 16 10

10 16 10

11 16 12

12 16 12

13 16 14

14 16 14

15 16 16

16 16 16

17 32 18

arbitr. chosen

Each resizing
means:

Copy WHOLE
array.

Case a):

Significantly
fewer resizings.

(From: Script Exercise 158.a)

Dynamic Storage Solution

• Larger by: a) factor 2 b) constant 2

17

elements Case a) Case b)

2 2 2

3 4 4

4 4 4

5 8 6

6 8 6

7 8 8

8 8 8

9 16 10

10 16 10

11 16 12

12 16 12

13 16 14

14 16 14

15 16 16

16 16 16

17 32 18

arbitr. chosen

Each resizing
means:

Copy WHOLE
array.

Case a):

Significantly
fewer resizings.

(From: Script Exercise 158.a)

Dynamic Storage Solution

• And the code…

18

int n = 1; // current array size

int k = 0; // number of elements read so far

// dynamically allocate array

int* a = new int[n]; // this time, a is NOT a constant

// read into the array

while (std::cin >> a[k]) {

if (++k == n) {

// next element wouldn't fit; replace the array a by

// a new one of twice the size

int* b = new int[n*=2]; // get pointer to new array

for (int i=0; i<k; ++i) // copy old array to new one

b[i] = a[i];

delete[] a; // delete old array

a = b; // let a point to new array

}

}

(From: Script Exercise 158.a)

By the way, …

• … this is exactly how

my_vec.push_back(...)

works. push_back is a member function.

• … all dynamic containers (vector, set, list, …) are
based on new, delete!

19

Vector…

Dynamic Storage in Vectors

•Vectors store 3 pointers:

begin: begin of memory

end: end of user-accessible part

end2: end of allocated part

21

4 2 7 24 7

begin end end2

Dynamic Storage in Vectors

• Important for vectors:

• In constructor: Set initial range

• In copy-constructor: Don’t copy just pointers;

i.e. copy the ranges behind them

• In operator=: Like copy-constructor, in addition:

i) prevent self-assignments

ii) don’t forget to delete old range

22

